Unicolour is the most comprehensive .NET library for working with color:
Written in C# with zero dependencies and supports full cross-platform compatibility.
Targets .NET Standard 2.0 for use in .NET 5.0+, .NET Core 2.0+ and .NET Framework 4.6.1+ applications.
See a live demo in the browser â a color picker for any color space â made with Unicolour.
Contents
A Unicolour
encapsulates a single color and its representation across 30+ color spaces.
It can be used to mix and compare colors, as well as other useful tools for working with color.
Supported color spaces
RGB ¡ Linear RGB ¡ HSB / HSV ¡ HSL ¡ HWB ¡ HSI ¡ CIEXYZ ¡ CIExyY ¡ WXY ¡ CIELAB ¡ CIELChab ¡ CIELUV ¡ CIELChuv ¡ HSLuv ¡ HPLuv ¡ YPbPr ¡ YCbCr / YUV (digital) ¡ YCgCo ¡ YUV (PAL) ¡ YIQ (NTSC) ¡ YDbDr (SECAM) ¡ TSL ¡ XYB ¡ IPT ¡ ICTCP ¡ Jzazbz ¡ JzCzhz ¡ Oklab ¡ Oklch ¡ Okhsv ¡ Okhsl ¡ Okhwb ¡ CIECAM02 ¡ CAM16 ¡ HCT ¡ CMYK / ICC Profile ?
Unicolour pink = new("#FF1493"); Console.WriteLine(pink.Oklab); // 0.65 +0.26 -0.01
This library was initially written for personal projects since existing libraries had complex APIs, missing features, or inaccurate conversions. The goal of this library is to be accurate, intuitive, and easy to use. Although performance is not a priority, conversions are only calculated once; when first evaluated (either on access or as part of an intermediate conversion step) the result is stored for future use.
Unicolour is extensively tested, including verification of roundtrip conversions, validation using known color values, and 100% line coverage and branch coverage.
dotnet add package Wacton.Unicolour
using Wacton.Unicolour;
Unicolour color = new(ColourSpace.Rgb255, 192, 255, 238);
The simplest way to get started is to make a Unicolour
and use it to see how the color is represented in a different color space.
var cyan = new Unicolour("#00FFFF");
Console.WriteLine(cyan.Hsl); // 180.0° 100.0% 50.0%
var yellow = new Unicolour(ColourSpace.Rgb255, 255, 255, 0);
Console.WriteLine(yellow.Hex); // #FFFF00
Colors can be mixed or interpolated using any color space.
var red = new Unicolour(ColourSpace.Rgb, 1.0, 0.0, 0.0);
var blue = new Unicolour(ColourSpace.Hsb, 240, 1.0, 1.0);
/* RGB: [1, 0, 0] âś [0, 0, 1] = [0.5, 0, 0.5] */
var purple = red.Mix(blue, ColourSpace.Rgb);
Console.WriteLine(purple.Rgb); // 0.50 0.00 0.50
Console.WriteLine(purple.Hex); // #800080
/* HSL: [0, 1, 0.5] âś [240, 1, 0.5] = [300, 1, 0.5] */
var magenta = red.Mix(blue, ColourSpace.Hsl);
Console.WriteLine(magenta.Rgb); // 1.00 0.00 1.00
Console.WriteLine(magenta.Hex); // #FF00FF
The difference or distance between colors can be calculated using any delta E metric.
var white = new Unicolour(ColourSpace.Oklab, 1.0, 0.0, 0.0);
var black = new Unicolour(ColourSpace.Oklab, 0.0, 0.0, 0.0);
var difference = white.Difference(black, DeltaE.Ciede2000);
Console.WriteLine(difference); // 100.0000
Other useful color information is available, such as chromaticity coordinates, temperature, and dominant wavelength.
var equalTristimulus = new Unicolour(ColourSpace.Xyz, 0.5, 0.5, 0.5);
Console.WriteLine(equalTristimulus.Chromaticity.Xy); // (0.3333, 0.3333)
Console.WriteLine(equalTristimulus.Chromaticity.Uv); // (0.2105, 0.3158)
Console.WriteLine(equalTristimulus.Temperature); // 5455.5 K (Îuv -0.00442)
Console.WriteLine(equalTristimulus.DominantWavelength); // 596.1
Reference white points (e.g. D65) and the RGB model (e.g. sRGB) can be configured.
Unicolour calculates all transformations required to convert from one color space to any other, so there is no need to manually chain multiple functions and removes the risk of rounding errors.
Unicolour color = new(ColourSpace.Rgb255, 192, 255, 238);
var (l, c, h) = color.Oklch.Triplet;
Color space | Enum | Property |
---|---|---|
RGBÂ (0â255) | ColourSpace.Rgb255 |
.Rgb.Byte255 |
RGB | ColourSpace.Rgb |
.Rgb |
Linear RGB | ColourSpace.RgbLinear |
.RgbLinear |
HSBÂ /Â HSV | ColourSpace.Hsb |
.Hsb |
HSL | ColourSpace.Hsl |
.Hsl |
HWB | ColourSpace.Hwb |
.Hwb |
HSI | ColourSpace.Hsi |
.Hsi |
CIEXYZ | ColourSpace.Xyz |
.Xyz |
CIExyY | ColourSpace.Xyy |
.Xyy |
WXY | ColourSpace.Wxy |
.Wxy |
CIELAB | ColourSpace.Lab |
.Lab |
CIELChab | ColourSpace.Lchab |
.Lchab |
CIELUV | ColourSpace.Luv |
.Luv |
CIELChuv | ColourSpace.Lchuv |
.Lchuv |
HSLuv | ColourSpace.Hsluv |
.Hsluv |
HPLuv | ColourSpace.Hpluv |
.Hpluv |
YPbPr | ColourSpace.Ypbpr |
.Ypbpr |
YCbCr / YUV (digital) | ColourSpace.Ycbcr |
.Ycbcr |
YCgCo | ColourSpace.Ycgco |
.Ycgco |
YUVÂ (PAL) | ColourSpace.Yuv |
.Yuv |
YIQÂ (NTSC) | ColourSpace.Yiq |
.Yiq |
YDbDr (SECAM) | ColourSpace.Ydbdr |
.Ydbdr |
TSL | ColourSpace.Tsl |
.Tsl |
XYB | ColourSpace.Xyb |
.Xyb |
IPT | ColourSpace.Ipt |
.Ipt |
ICTCP | ColourSpace.Ictcp |
.Ictcp |
Jzazbz | ColourSpace.Jzazbz |
.Jzazbz |
JzCzhz | ColourSpace.Jzczhz |
.Jzczhz |
Oklab | ColourSpace.Oklab |
.Oklab |
Oklch | ColourSpace.Oklch |
.Oklch |
Okhsv | ColourSpace.Okhsv |
.Okhsv |
Okhsl | ColourSpace.Okhsl |
.Okhsl |
Okhwb | ColourSpace.Okhwb |
.Okhwb |
CIECAM02 | ColourSpace.Cam02 |
.Cam02 |
CAM16 | ColourSpace.Cam16 |
.Cam16 |
HCT | ColourSpace.Hct |
.Hct |
CMYKÂ /Â ICCÂ Profile ? | - | .Icc |
Two colors can be mixed by interpolating between them in any color space, taking into account cyclic hue, interpolation distance, and alpha premultiplication.
var red = new Unicolour(ColourSpace.Rgb, 1.0, 0.0, 0.0);
var blue = new Unicolour(ColourSpace.Hsb, 240, 1.0, 1.0);
var magenta = red.Mix(blue, ColourSpace.Hsl, 0.5, HueSpan.Decreasing);
var green = red.Mix(blue, ColourSpace.Hsl, 0.5, HueSpan.Increasing);
Hue span | Enum |
---|---|
Shorter đ default | HueSpan.Shorter |
Longer | HueSpan.Longer |
Increasing | HueSpan.Increasing |
Decreasing | HueSpan.Decreasing |
Two methods of comparing colors are available: contrast and difference. Difference is calculated according to a specific delta E (ÎE) metric.
var red = new Unicolour(ColourSpace.Rgb, 1.0, 0.0, 0.0);
var blue = new Unicolour(ColourSpace.Hsb, 240, 1.0, 1.0);
var contrast = red.Contrast(blue);
var difference = red.Difference(blue, DeltaE.Cie76);
Delta E | Enum |
---|---|
ÎE76Â (CIE76) | DeltaE.Cie76 |
ÎE94 (CIE94) graphic arts | DeltaE.Cie94 |
ÎE94Â (CIE94)Â textiles | DeltaE.Cie94Textiles |
ÎE00Â (CIEDE2000) | DeltaE.Ciede2000 |
ÎECMCÂ (CMCÂ l:c)Â 2:1Â acceptability | DeltaE.CmcAcceptability |
ÎECMCÂ (CMCÂ l:c)Â 1:1Â perceptibility | DeltaE.CmcPerceptibility |
ÎEITP | DeltaE.Itp |
ÎEz | DeltaE.Z |
ÎEHyAB | DeltaE.Hyab |
ÎEOK | DeltaE.Ok |
ÎECAM02 | DeltaE.Cam02 |
ÎECAM16 | DeltaE.Cam16 |
Colors that cannot be displayed with the configured RGB model can be mapped to the closest in-gamut color. The gamut mapping algorithm conforms to CSS specifications.
var outOfGamut = new Unicolour(ColourSpace.Rgb, -0.51, 1.02, -0.31);
var inGamut = outOfGamut.MapToGamut();
Correlated color temperature (CCT) and delta UV (âuv) can be obtained from a color, and can be used to create a color. CCT from 500 K to 1,000,000,000 K is supported but only CCT from 1,000 K to 20,000 K is guaranteed to have high accuracy.
var chromaticity = new Chromaticity(0.3457, 0.3585);
var d50 = new Unicolour(chromaticity);
var (cct, duv) = d50.Temperature;
var temperature = new Temperature(6504, 0.0032);
var d65 = new Unicolour(temperature);
var (x, y) = d65.Chromaticity;
A spectral power distribution (SPD) can be used to create a color. Wavelengths should be provided in either 1 nm or 5 nm intervals, and omitted wavelengths are assumed to have zero spectral power.
var spd = new Spd
{
{ 575, 0.5 },
{ 580, 1.0 },
{ 585, 0.5 }
};
var intenseYellow = new Unicolour(spd);
The dominant wavelength and excitation purity of a color can be derived using the spectral locus. Wavelengths from 360 nm to 700 nm are supported.
var chromaticity = new Chromaticity(0.1, 0.8);
var hyperGreen = new Unicolour(chromaticity);
var dominantWavelength = hyperGreen.DominantWavelength;
var excitationPurity = hyperGreen.ExcitationPurity;
Whether a color is imaginary â one that cannot be produced by the eye â can be determined using the spectral locus. They are the colors that lie outside the horseshoe-shaped curve of the CIE xy chromaticity diagram.
var chromaticity = new Chromaticity(0.05, 0.05);
var impossibleBlue = new Unicolour(chromaticity);
var isImaginary = impossibleBlue.IsImaginary;
A new Unicolour
can be generated that simulates how a color appears to someone with a particular color vision deficiency (CVD) or color blindness.
var color = new Unicolour(ColourSpace.Rgb255, 192, 255, 238);
var noRed = color.SimulateProtanopia();
Color vision deficiency | Method |
---|---|
Protanopia (no red perception) | SimulateProtanopia() |
Deuteranopia (no green perception) | SimulateDeuteranopia() |
Tritanopia (no blue perception) | SimulateTritanopia() |
Achromatopsia (no color perception) | SimulateAchromatopsia() |
Device-dependent color prints of 4 (e.g. FOGRA39 CMYK) or more (e.g. FOGRA55 CMYKOGV) are supported through ICC profiles. If no ICC profile is provided, or if the profile is incompatible, naive conversion for uncalibrated CMYK is used instead.
using Wacton.Unicolour.Icc;
var fogra39 = new IccConfiguration("./Fogra39.icc", Intent.RelativeColorimetric);
var config = new Configuration(iccConfiguration: fogra39);
var navyRgb = new Unicolour(config, ColourSpace.Rgb255, 0, 0, 128);
Console.WriteLine(navyRgb.Icc); // 1.0000 0.8977 0.0001 0.2867 CMYK
var navyCmyk = new Unicolour(config, new Channels(1.0, 1.0, 0.0, 0.5));
Console.WriteLine(navyCmyk.Rgb.Byte255); // 46 37 87
The following tables summarise which ICC profiles are compatible with Unicolour:
 | Profile version |
---|---|
â | 2 |
â | 4 |
â | 5 / iccMAX |
 | Profile/device class |
---|---|
â | Input scnr |
â | Display mntr |
â | Output prtr |
â | ColorSpace spac |
â | DeviceLink link |
â | Abstract abst |
â | NamedColor nmcl |
 | Transform |
---|---|
â | AToB / BToA A2B0 A2B1 A2B2 B2A0 B2A1 B2A2 |
â | TRC matrix rTRC gTRC bTRC rXYZ gXYZ bXYZ |
â | TRC gray kTRC |
â | DToB / BToD D2B0 D2B1 D2B2 D2B3 B2D0 B2D1 B2D2 B2D3 |
A wider variety of ICC profiles will be supported in future releases. If a problem is encountered using an ICC profile that meets the above criteria, please raise an issue.
It is possible for invalid or unreasonable values to be used in calculations, either because conversion formulas have limitations or because a user passes them as arguments. Although these values donât make sense to use, they should propagate safely and avoid triggering exceptions.
var bad1 = new Unicolour(ColourSpace.Oklab, double.NegativeInfinity, double.NaN, double.Epsilon);
var bad2 = new Unicolour(ColourSpace.Cam16, double.NaN, double.MaxValue, double.MinValue);
var bad3 = bad1.Mix(bad2, ColourSpace.Hct, amount: double.PositiveInfinity);
Unicolour uses sRGB as the default RGB model and standard illuminant D65 (2° observer) as the default white point of all color spaces,
ensuring consistency and a suitable starting point for simple applications.
These can be overridden using the Configuration
parameter, and common configurations have been predefined.
var defaultConfig = new Configuration(RgbConfiguration.StandardRgb, XyzConfiguration.D65);
var color = new Unicolour(defaultConfig, ColourSpace.Rgb255, 192, 255, 238);
Each line of artisan code is exquisitely handcrafted in small-batch programming sessions. No dependencies are used, so there is no risk of reliance on deprecated, obsolete, or unmaintained packages. Every line of code is tested, and any defect is Unicolourâs responsibility.
The Configuration
parameter can be used to define the context of the color.
Example configuration with predefined Rec. 2020 RGB & illuminant D50 (2° observer) XYZ:
Configuration config = new(RgbConfiguration.Rec2020, XyzConfiguration.D50);
Unicolour color = new(config, ColourSpace.Rgb255, 204, 64, 132);
Example configuration with manually defined wide-gamut RGB & illuminant C (10° observer) XYZ:
var rgbConfig = new RgbConfiguration(
chromaticityR: new(0.7347, 0.2653),
chromaticityG: new(0.1152, 0.8264),
chromaticityB: new(0.1566, 0.0177),
whitePoint: Illuminant.D50.GetWhitePoint(Observer.Degree2),
fromLinear: value => Math.Pow(value, 1 / 2.19921875),
toLinear: value => Math.Pow(value, 2.19921875)
);
var xyzConfig = new XyzConfiguration(Illuminant.C, Observer.Degree10);
var config = new Configuration(rgbConfig, xyzConfig);
var color = new Unicolour(config, ColourSpace.Rgb255, 202, 97, 143);
A Configuration
is composed of sub-configurations.
Each sub-configuration is optional and will fall back to a sensible default if not provided.
RgbConfiguration
Defines the RGB model, often used to specify a wider gamut than standard RGB (sRGB).
Predefined | Property |
---|---|
sRGB đ default | .StandardRgb |
Display P3 | .DisplayP3 |
Rec. 2020 | .Rec2020 |
A98 | .A98 |
ProPhoto | .ProPhoto |
ACESÂ 2065-1 | .Aces20651 |
ACEScg | .Acescg |
ACEScct | .Acescct |
ACEScc | .Acescc |
Rec. 601 (625-line) | .Rec601Line625 |
Rec. 601 (525-line) | .Rec601Line525 |
Rec. 709 | .Rec709 |
xvYCC | .XvYcc |
PAL (Rec. 470) | .Pal |
PAL-M (Rec. 470) | .PalM |
PAL 625 (Rec. 1700) | .Pal625 |
PAL 525 (Rec. 1700) | .Pal525 |
NTSC (Rec. 470) | .Ntsc |
NTSCÂ (SMPTE-C) | .NtscSmpteC |
NTSC 525 (Rec. 1700) | .Ntsc525 |
SECAM (Rec. 470) | .Secam |
SECAM 625 (Rec. 1700) | .Secam625 |
XyzConfiguration
Defines the XYZ white point (which is also inherited by color spaces that do not need a specific configuration), as well as the observer to use for temperature calculations.
Predefined | Property |
---|---|
D65 (2° observer) đ default | .D65 |
D50 (2° observer) | .D50 |
YbrConfiguration
Defines the constants, scaling, and offsets required to convert to YPbPr and YCbCr.
Predefined | Property |
---|---|
Rec. 601 đ default | .Rec601 |
Rec. 709 | .Rec709 |
Rec. 2020 | .Rec2020 |
JPEG | .Jpeg |
CamConfiguration
Defines the viewing conditions for CAM02 and CAM16, which take into account the surrounding environment to determine how a color is perceived.
Predefined | Property |
---|---|
sRGB đ default | .StandardRgb |
HCT | .Hct |
The predefined sRGB configuration refers to an ambient illumination of 64 lux under a gray world assumption.
IccConfiguration
Defines the ICC profile and rendering intent, typically used for accurate CMYK conversion.
Predefined | Property |
---|---|
None đ default | .None |
Unicolour does not embed or distribute ICC profiles. Some commonly used profiles can be found in the ICC profile registry.
.icc
file)IctcpScalar
& JzazbzScalar
There is ambiguity and no clear consensus about how XYZ values should be scaled before calculating ICTCP and Jzazbz. These scalars can be changed to match the behaviour of other implementations if needed.
All color spaces are impacted by the reference white point. Unicolour applies different reference white points to different sets of color spaces, as shown in the table below. When a conversion to or from XYZ space involves a change in white point, a chromatic adaptation transform (CAT) is performed using the Bradford method.
White point configuration | Affected color spaces |
---|---|
RgbConfiguration |
RGB ¡ Linear RGB ¡ HSB / HSV ¡ HSL ¡ HWB ¡ HSI ¡ YPbPr ¡ YCbCr / YUV (digital) ¡ YCgCo ¡ YUV (PAL) ¡ YIQ (NTSC) ¡ YDbDr (SECAM) ¡ TSL ¡ XYB |
XyzConfiguration |
CIEXYZ ¡ CIExyY ¡ WXY ¡ CIELAB ¡ CIELChab ¡ CIELUV ¡ CIELChuv ¡ HSLuv ¡ HPLuv |
CamConfiguration |
CIECAM02 ¡ CAM16 |
None (always D65/2°) | IPT ¡ ICTCP ¡ Jzazbz ¡ JzCzhz ¡ Oklab ¡ Oklch ¡ Okhsv ¡ Okhsl ¡ Okhwb ¡ HCT |
A Unicolour
can be converted to a different configuration,
in turn enabling conversions between different RGB models, XYZ white points, CAM viewing conditions, ICC profiles, etc.
/* pure sRGB green */
var srgbConfig = new Configuration(RgbConfiguration.StandardRgb);
var srgbColor = new Unicolour(srgbConfig, ColourSpace.Rgb, 0, 1, 0);
Console.WriteLine(srgbColour.Rgb); // 0.00 1.00 0.00
/* âś Display P3 */
var displayP3Config = new Configuration(RgbConfiguration.DisplayP3);
var displayP3Color = srgbColour.ConvertToConfiguration(displayP3Config);
Console.WriteLine(displayP3Colour.Rgb); // 0.46 0.99 0.30
/* âś Rec. 2020 */
var rec2020Config = new Configuration(RgbConfiguration.Rec2020);
var rec2020Color = displayP3Colour.ConvertToConfiguration(rec2020Config);
Console.WriteLine(rec2020Colour.Rgb); // 0.57 0.96 0.27
This repository contains projects showing how Unicolour can be used to create:
Example code to create gradient images using đˇ SixLabors.ImageSharp can be seen in the Example.Gradients project.
Gradients generated through each color space |
Visualization of temperature from 1,000 K to 13,000 K |
Color spectrum rendered with different color vision deficiencies |
Demonstration of interpolating from red to transparent to blue, with and without premultiplied alpha |
Perceptually uniform colormaps from Unicolour.Datasets |
Example code to create heatmaps of luminance using đˇ SixLabors.ImageSharp with images from đ NASA can be seen in the Example.Heatmaps project.
Heatmap of the âď¸ sun using perceptually uniform colormaps from Unicolour.Datasets |
Heatmap of the đ moon using perceptually uniform colormaps from Unicolour.Datasets |
Example code to create diagrams of color data using đ ScottPlot can be seen in the Example.Diagrams project.
CIE xy chromaticity diagram with sRGB gamut |
CIE xy chromaticity diagram with Planckian or blackbody locus |
CIE xy chromaticity diagram with spectral locus plotted at 1 nm intervals |
CIE 1960 color space |
CIE 1960 color space with Planckian or blackbody locus |
Example code to create a colorful console application using â¨ď¸ Spectre.Console can be seen in the Example.Console project.
Console application displaying color information from a hex value |
Example code to create a client-side color picker web application using đ¸ď¸ Blazor can be seen in the Example.Web project.
See the live demo!
Web application for picking colors in any color space |
Example code to create 3D visualizations of color spaces using đŽ Unity can be seen in the Example.Unity project.
Try it out online in Unity Play!
3D visualization of color spaces in Unity |
3D movement through color spaces in Unity |
Some color datasets have been compiled for convenience and are available as a NuGet package.
Commonly used sets of colors:
Perceptually uniform colormaps / palettes:
Color data used in academic literature:
Example usage:
dotnet add package Wacton.Unicolour.Datasets
using Wacton.Unicolour.Datasets;
Unicolour
var pink = Css.DeepPink;
var green = Xkcd.NastyGreen;
var mapped = Colourmaps.Viridis.Map(0.5);
Wacton.Unicolour is licensed under the MIT License, copyright Š 2022-2025 William Acton.
Also available in British đŹđ§.